TWO NEW ANOMALOCYSTITID MITRATES FROM THE LOWER DEVONIAN HUMEVALE FORMATION OF CENTRAL VICTORIA

MARCELLO RUTA AND PETER A. JELL.

Abstract

Ruta, M. \& Jcll, P.A. 199906 30: Two new anomalocystitid mitrates from the Lower Dcvonian Humevale Formation of central Vietoria. Memoirs of the Queenslant Museum 43(1): 399-422. Brisbane. ISSN 0079-8835.

Abstract

The anomalocystitid mitrates Victoriacystis holmesorun sp. nov. and Pseudovictoriacystis problematica gen. et sp. nov. are described from the Lowcr Devonian Humevale Formation of eentral Vietoria. V. holmesorum varies eonsistently from the type species, V. wilkinsi, in the size (larger), shape and proportions of some body plates, the larger more robust spines and the shape of ossieles of distal part of appendage. Some specimens have a sinuous to erook-shaped right spine; others have a proximally geniculate right spine; the left spine is more robust than the right and cigar-shaped. Pseudovictoriacystis problematica has an unusual plate configuration on convex surface, which consists of 14 plates, without intervening row II, apparcntly without C 16 and C 18 , and with a grcatly elongatc C 17 . Otherwise it is very similar to V . holmesorum, especially in distribution of terrace- like ridges and shape and proportions of plates on plano-coneave surface. Anomalocystitida, Victoriacystis. Pseudovictoriacystis. Devonian, Austrulia.

Marcello Ruta, Department of Palaeontology. The Natural History Museum. Cromwell Road, London SW7 5BD, United Kingdom; Peter A. Jell, Queensland Museum, P.O. Box 3300, South Brisbane 4101. Australia; received 2 March 1998.

Victoriacystis was the first anomalocystitid described from Australia (Gill \& Caster, 1960). The type specics, V. wilkinsi Gill \& Caster, 1960, redescribed by Ruta (1997), occurs in the lower Ludlovian of the Dargile Formation near Heathcote and the Melbourne Formation at Hawthorn, Melbourne. Although the material from the Melbourne suburb of Hawthorn has been considered Lower Silurian (Gill \& Caster, 1960; Talent, 1967: Ruta, 1997), it occurs in the Melbourne Formation of Vandenberg (1988) and is thus Ludlovian. Its age is, therefore, similar to that of the specimens from Heathcote. An incomplete and poorly preserved mitrate (NMVP16880, 16881) from the Lower Devonian part of the Humevale Formation near Kinglake West was attributed by Gill \& Caster (1960) to V. aff. wilkinsi. Ruta (1997) considered it inseparable from the type species. However, additional, more complete specimens from the same locality show that the Lower Devonian Victoriacystis is speeifieally distinct.

Herein, we revise the diagnosis of Victoriacystis (Gill \& Caster, 1960; Ruta, in press), taking account of the Lower Devonian specics and newly available specimens of Upper Silurian V. wilkinsi which are treated elsewhere (Ruta \& Jell, 1999b).
A seeond Lower Devonian anomalocystitid mitrate genus from the Humevale Formation,
known from a single, parially disrupted individual, is similar to the new species of Victoriacystis in the plano-concave surface, but has an unusual plating pattern on the convex surface.

GEOLOGICAL SETTING

Material described, about 30 partially to fully articulated specimens. comes from NMVPL252 (=Davies Quarry (Gill, 1948); =Middendorp's Quarry (Williams, 1964)) on the western branch of Stony Creek, about 1.6 km N of Kinglake West State School and 40 km NNE of Melbourne: the site is Lochkovian (Gill \& Caster, 1960; Strusz, 1972; Vandenberg, 1988; Vandenberg et al., 1976; Holloway \& Jell. 1983; Jell, 1983). Fossils are found in a steely grey pyritie siltstone and are coneentrated in a few thin bands interspersed through about 30 m exposed in the quarry wall. The diverse fossill faunas arc considered to be "... pockets of organic debris ... that do not represent natural assemblages" (Jell, 1983: 210) based on disrupted bedding, attitude of various fossilised individuals and the great concentration of animals in a few thin beds.

Analysis of Gillocystis runcinata (ophiocistioid). Hillocystis atracta (rhombiferan) and Sphagoblastus adectus (blastoid) (Jell, 1983) suggests that the animals were probably buried when they were still alive and were flattened or
slightly crushed by pressurc from overlying sediment, depending upon the degree of rigidity of their thecae. Plate dislocation is minimal or does not occur at all. Almost complete absence of skelctal disruption, fractured individual plates, preservation of oral and aboral sides as internally contiguous surfaces (e.g. jaw apparatus of Gillocystis against inner aboral surface) and collapse of periproctal plates onto internal side of dorsal thecal surface (c.g. Hillocystis) indicate that sediment did not usually enter the body cavity and that geostatic compression of skcletons occurred soon after burial and before soft tissue decay.
Mode of preservation of several individuals of I. holmesorum is similar to that of Sphagoblastus but may differ from that of Gillocystis and Hillocystis. Most mitrate specimens arc preserved as external moulds, often covered with thin layers of iron oxides. As in Sphagoblasths, the theca of lictoriacystis is a rigid structure composed of tightly sutured polygonal plates. In most cases, both its convex surface and its plano-concave surface are found almost completely articulated. Disruption is minimal and affects mainly LOP, MOP and $\mathrm{Cl}-\mathrm{C} 9$. Such plates gencrally lic in close proximity to each other and to the rest of the skelcton and their mutual spatial relationships are often almost unchanged.
Fractures occur usually along lateral margins of the plano- concave surfacc and on plates PLM, C and C20-C22 and are more numerous in the proximal $1 / 3$ of the body, where, as in the case of other mitrates, the skeleton reaches maximum thickness and greatest curvature (Parsley, 1991). Fractures arc sometimes visible at junctions betwcen horizontal and subvertical projections of plates DLM, ILM and PLM. In these cases, subvertical projections often lie flush with convex surface plates while retaining their mutual contacts with them. In some specimens, the convex surface is collapsed onto the plano-concave surface and disruption occurs mainly at level of sutures between lateral plates of convex surface and subvertical projections of DLM, ILM and PLM. C17 is often found suturcd with C16 and C18 in contrast with the situation observed in other anomalocystitids in which, when present, this plate is rarely in place (Dchm, 1932; lefferies \& Lewis, 1978; Kolata \& Jollic, 1982; Parsley, 1991; Ruta, 1997, Ruta \& Bartcls, 1998). In a number of specimens, one or, exceptionally, both distal spines are found articulated to DLM, or at a short distance from the body. More frequently, both spines are missing.

Few specimens retain intact appendages, and even in those cases, only proximal and intermediate parts are still in place; ossicles and paired plates of distal part are not preserved. Usually, the tetramcrous rings of the proximal part are complete but collapsed while retaining their telescopic arrangement. Scparation of ring elcments is rare as is their preservation as fully undeformed structures. In some specimens, paired plates and ossicles of the distal part arc preserved intact and undeformed, albeit rarely articulated with each other: Frequently, plates are disarticulated, collapsed onto the abapical surface of ossicles or missing altogether. Sometimes, paircd plates (especially proximal) are found detached from ossicles while still overlapping each other proximo-distally. The ossicles frequently maintain their alignment. Proximal and distal articular surfaces are observed in at least one individual.
Although rare and largely incomplete in their proximal $1 / 2$, internal moulds are sometimes associated with partially disrupted external moulds. Unlike other Lower Devonian echinoderms from the Humevale Formation, Victoriacystis has a relatively large, transversely elongate distal orifice through which fine sediment could easily enter the body cavity during burial. Similar preservation is known in other carpoids, both solutes (Jefferies, 1990) and cornute stylophorans (Jcfferies, 1968; Woods \& Jefferies, 1992).

SYSTEMATIC PALAEONTOLOGY

Extcrnal skeletal terminology and plate nomenclature follow Ruta (in press) with modifications as in Ruta \& Jell (1999a). Description of internal body anatomy is based on Ubaghs (1968, 1969). Morphological terminology of ossicles is that of Jefferies \& Lewis (1978) and Ruta \& Theron (1997). The terms 'apical' and 'abapical' indicate the position of structures close to or away from the ossicular process (or apcx) respectively. Specimens are deposited in the Palacontological Collections of the National Museum of Victoria, Mclbourne (NMVP) and the locality is registered in the locality register at the same Museum (NMVPL). Study and illustration of skelctal details was made on latex casts whitened with ammonium chloride.

FIG. 1. Tictoriacystis holmesortom sp. nov. All plano-concave surfaces showing terrace-like ridges, spines, tetramerous rings, styloid and proximal ossicles. A, NMVP100361.B, NMVP100387b, C, NMVP100385.D, NMVP100369. E, NMVP100373. 111×3.

FIG. 2. I ictoriacysfisholmesormmsp. nov. A, E, lateral and plano-concave surface views of NMVPI $001382, \times 5$ and $\times 3$, respectively. B , appendage in lateral view of NMVP100371, $\times 7, \mathrm{C}$, plano-concave surface of NMVP108627, $\times 2$. D. plano-concave surface of NMVP100378b, $\times 2$

FIG. 3. Victoriacustis holmesormm sp. nov. A, left spine of NMVP $100365, \times 5$. B, right spine and articulation of NMVP100371, $\times 7$. C, right spine and articulation of NMVP $100367, \times 5$. D, plano-concave surface of NMVP $100381, \times 3$. E, plano-concave surface of NMVP100384, $\times 3$.

FIG. 4. Victoriacystisholmesorum sp, nov. All convex surfaces, showing terrace-likeridges, spines, tetramerous rings, styloid and ossicles. A, NMVP100362, $\times 3$. B, NMVP100363 (holotype), $\times 2$. C, (distally damaged)
NMVP100378b $\times 2$ D NMVP100378b, $\times 2$. D, (partial)NMVP $100385, \times 3$. E, NMVP100376, $\times 3 . F$, NMVP $100374, \times 2$.

Superorder STYLOPHORA Gill \& Caster, 1960 Order MITRATA Jaekel, 1918
 Suborder ANOMALOCYSTITIDA Caster, 1952
 Family PLACOCYSTITIDAE Caster, 1952

REMARKS. Family groupings in the Anomalocystitida are not satisfactory (Parsley, 1991: Ruta \& Theron, 1997; Ruta, in press; Ruta \& Bartels, 1998). Analysis of character distribution (Ruta. in press) suggests that, with the exception of the Allanicytidiidae Caster \& Gill, 1968 , all families, including Placocystitidae as defined by Parsley (1991), are not monophyletic. Parsley (1991) and Ruta (in press) concur in recognising Victoriacystis as sister takon to (Placocystites + Rhenacystis). However, the allanicytidids are not closely related to these 3 genera. As Parsley (1991:16) pointed out, their ${ }^{\prime}$... assignment to the Placocystitidae is admittedly speculative', In the light of the revised family concept of Parsley (1991), we restrict this family to Placocystites. Rhenocystis and Victoriacystis only:

Victoriacystis Gill \& Caster, 1960

TYPE SPECIES, Victoriacysnis yilkinsi Gill \& Caster, 1960 from the early Ludlow Graptolite Beds, Dargile Formation, Victoris; by ofriginal designation.

DIAGNOSIS. Rows I-V with 5,4,3,5,3 plates, respectively. Cl and C 5 smaller than C2-C4.C17 elliptical to tounded, c. $3 / 2$ as long as adjaceat C16 and C18. Sutures between C15 and C16 and between C18 and C19 medially convex. C21 shield-shaped to rhomboidal. deeply but not completely inserted between C20 and C22. B absent. A-C suture oblique. Robust, transverse terrace-like ridges mainly confined to $\mathrm{C} 20-\mathrm{C} 22$ and PLM. Lateral margins of PM convex laterally. Tetramerous rings wider proximally than distally, with fold of polyplated integument between rings. Styloid with median longitudinal keel, proximal blade elliptical in section, distal blade spine-like. Successive ossicles decreasing rapidly in size.

Victoriacystis holmesorum sp. nov. (Figs 1-13)
IIcuoracysus aff, ivilanist Gilf \& Casier 7960:54, p1. 10, Figs 1.3

Fictonucystrs willonst Gill \& Caster Reta. 1997:85. fig 5. H C

ETYMOLOGY. For Frank and Enid Holmes, for their askistance in collecting the material.

MATERIAL. HOLOTYPE: NMIVIO0B63. PARATYPES: NMVP100361-100362.300364-100382, 100384-1003889 ail from NMVPL252.

DIAGNOSIS. C10. C12 and C14 larger than adjacent proximal and distal plates. Proximal half of Cl 5 and C 18 narrower than distal half. C 17 not in contact with either proximal angle of Cl 2 or distal angle of C21. A larger than LOP or MOP Strongly arcuate or geniculate suture between A and C. Distal portion of appendage not differentiated. Styloid large and robust. Proximal ossicular blades strongly recurved. Paired plates distally in appendage without tubercles. Left spine robust, cigar-shaped, $>1 / 2$ as long as body, with lateral cutting edge; right spine more slender, sigmoid to geniculate, without cutting edges.

DESCRIPTION. EXTERNAL. Measmemenls. Holotype: body e. 28 mm long, 15 mm wide. Smallest specimen (Figs 1C, 4D): body c. 21 mm long. 15 mm wide. Largest specimen (Fig. 1E): body c. 30 min long 17 mm wide.
Plano-concave surface. Plano-concave surface subrectangular, slightly wider than convex surface, with sharp lateral margins of 11 marginal and 2 subcentral plates (Figs LA-E, 2C-E, 3D-E, 12A), with maximum width at or slightly proximal to latero-distal angles of PLM. PM flat. almost as wide proximally as distally. with convex lateral margins except for abrupt curve before joining proximal margin. Curvature of distal margin of left PM usually higher than that of right PM (Figs [A-E, 2A,C-E, 3D-E, 5D, 6E, 12A). PLM, ILM and DLM with flat horizontal projections; well-developed, subvertical projections with gently convex cross-section and meeting plano-concave surface at 60° (Fig. 12D-E). PLM more than twice as wide distally as proximally, with subvertical projection subtrapezoidal, of uniform depth in distal 1/3, decreasing in depth proximally (Figs $1 \mathrm{~A}-\mathrm{B}, 2 \mathrm{~A}$, C-E, 3D, 4B, F, 5A-C, 12B). ILM trapezoidal. slightly shorter than PLM, with distally diverging, gently concave medial margins: subvertical projection subrectangular, comparable in size with those of DLM and PLM, with sutural margin in 2 shallow embayments of about same size, DLM irtégularly pentagonal, with convex medial margins, with longer less convex Lateral margins, with medial $2 / 3$ of distal margin thickened and slightly domed. Subvertical projections subpentagonal, with suturat margin in 2 embayments, Distal surface of DLM vertical or sloping distally towards convex surface, subtriangular, shallower peripherally. with subcentral vertically elongate narrow toroidal process for spine insettion sitting on

MIG. 5. Victoriacystis holmesorum sp. nov. Convex surfaces showing terrace-like ridges. spines, tetramerous rings. A, NMVP100387a. B. (proximal part only)NMVP100382.C, (2 individuals side by side)NMVP108625. D.extemal ol plano-concavesurface proximally and inside of convex sutface distally ofNMVP100376. All $\times 3$.

[FIG 6. Jictoriacystis holmesorum sp. nov. Spines (A-D), plano-concave surfice (C,b) and proximal body excavation(b) A, let spine NMVP100367, $\times 5.13$, right spme NMVP100374, $\times 5 . \mathrm{C}$, right spine NMVI $10038-2$ $\times 5 . \mathrm{D}$, tight spine NMVP $100361 .>5$. 12. NMVP $10(1370, \times 7$.
slightly raised, lens-shaped projection. Small gap between lateral margin of each LOP and medio-distal margin of each DLM (Figs 1A-B, $2 \mathrm{~A}, \mathrm{C}, 3 \mathrm{D}, 4 \mathrm{~A}-\mathrm{B}, \mathrm{F}, 5 \mathrm{~A}, 11 \mathrm{~A}, 12 \mathrm{~A})$. MOP and LOP forming abmost transverse row along distal margin. Vertical projections about 1/3 as large as horizontal projections. MOP about twice as wide as each LOP, rectangular, with straight distal margin. LOP e.3/5 size of DLM, subpentagonal, with blunt round latero-distal angles (Figs 1A-D, 2C-D, 6A-B,D, 7A, 12A). Plate A gencrally subpentagonal to shield-shaped, c.1.5 times as large as each DLM, wedged between left ILM and C, with medial margin areuate or geniculate, with lateral margin twice as long as latero-distal margin. Plate C largest plate in body, c. $1 / 2$ as long and wide as plano-concave surface, with medio-distal margin almost 1.5 times as long as latero-distal margin. Small. round tubercles subcentrally on A and on distal $1 / 3$ of C (Figs IA, D, 2C, 3D, 6B,D, 7A).

Convex surface. 20 plates in 5 transverse rows. Rows $11-\mathrm{V}$ gently concave distally. Rows 1 and 1 V with 5 plates each. Rows III and V with 3 plates each. Row 11 with 4 plates (Figs 4A-F, 5A-C, 12C). Maximum convexity c. $2 / 3$ of way proximally along C20 and C22 (Fig. 12B). Plates generally decreasing in size distally, except C15 and C19, which are smaller than C10 and C14. C2-C4 subpentagonal, subequal, larger than subrectangular C1 and C5 and just smaller than hexagonal C7 and C8. Distal margins of C1-C5 broadly convex. Lateral margins of C3 usually concave, sometimes straight (Figs 4A-F, 5A.C, 12C). Proximo-medial and proximo-lateral margins of C7 and C8 and proximal margins of C6 and C9 convex. C6 and C9 subpentagonal, often more expanded transversely than proximo-distally (unlike C2-C4), with subparallel laterally diverging (rarely converging) proximal and distal margins (Figs 4A-F, 5A,C, 12C). C10 and Cl4 wider than long, subhexagonal, with very short medio-distal and medio-proximal margins. C12 hexagonal, slightly wider proximally than distally (Figs $4 \mathrm{~A}-\mathrm{F}, 5 \mathrm{~A}-\mathrm{C}, 12 \mathrm{C}$). C15 and C19 subtrapezoidal, with convex margins, much wider distally than proximally (Figs 4A-C, D-E, 5A-C, 12C). C16 and C18 with lateral margins strongly diverging proximally, with latero-distal margins $1 / 2-1 / 3$ length of medio-distal margins. Suture between C16 and C18 extremely short distally, slightly longer in proximal section. C17 subrounded to subelliptical. $<1 / 2$ as long as C16 and C18, never in contact with C12 or C21, flat or slightly raised
above convex surface (Figs 4A-C,E-F, 5A- C, 8D, 12C). C21 shield-shaped, subhexagonal, with gently convex or rarely straight latero-distal margins meeting at obtuse angle, with proximo-lateral margins straight in distal $1 / 2$ and convex in proximal $1 / 2$ (Figs 4A-F, 5A-C, 8D, $10 \mathrm{C}, 12 \mathrm{C}$). C20 and C22 largest plates on convex surface, almost twice as long as wide, with oblique distal margins, with convexity of lateral margins increasing slightly proximally (Figs 4A-C,E-F, 5A-C, 7B, 10C, 12C).
Sculpture. Terrace-like ridges on PLM (Figs 1A-E, 2A, C-E, 3D-E, 5D, 11C, 12A) and C20C22 (Figs 4A-F, 5A-C, 8D, 10C, 12A-C), transverse, mostly uniform distance apart, never anastomosing, interrupted abruptly at interplate sutures. Ridges near proximo-lateral angles of PLM, C20 and C22 and near proximal margins of C20 and C22 usually short, interrupted medially, sometimes bifurcating, more crowded together than elsewhere. Bifurcations of ridges rare, in either direction. Ridges on PLM more robust than on C20-C22, with slightly deeper and steeper proximat slope, with distal slope almost flat, slightly convex proximally and gently concave distally. Ridges on C21 variable, with 5-6 most proximal ridges rarely transverse (Fig. 5B), more often convex distally (Figs 4A-C. 8D), with convexity decreasing in straighter more distal ridges, with subcentral ridges straight or chevron-shaped with apex of chevron pointing proximally, with lateral $1 / 2$ of chevron arms transversc or slightly diverging distally, with most distal ridges transverse.
Body stereom. Uniformly compact (Fig, 6E) or of minute perforations with irregular outline and no evident distribution pattern (Fig. 8D). Perforations absent or very small along plate margins, frequently replaced by narrow band of short close spaced straight striations. Stereom of centre of plates rarely coarser than peripheral stereom, with more widely spaced larger pores and thicker trabeculae especially on MOP, LOP, A and C (Fig. 1A,D). Stereom of terrace-like ridges on convex surface granular, more compact at free margins. Stcreom of ridges on plano-concave surface compact along frec margins, coarse and irregularly perforated by small pores on distal $1 / 2$, giving rise to faint striations on proximal $1 / 2$. Striations at $\mathrm{c} .45^{\circ}$ in medio-lateral direction.
Spines. Left spine straight, massive, $1 / 2-5 / 8$ body length, cigar-shaped, tapering to a blunt end in distal $1 / 3$, with cross-section of proximal $2 / 3$ asymmetrical, with semicireular medial margin,

 of proximal appendage of NMVP100374, $\times 2$ and $\cdot 5$, respectivels. \dot{B}, inside of plano-concave surface of NMVP100371, 21)1, proximaland distal articular surfacesolossicles NMVP108627. 10. E, insideo of distal part of convex surlace of'NMVI'1001376, $\times 7$.

FIG. 8. Victoriacystis holmesorum sp, nov. A, tetramerous rings and styloid of NMVP100373, $\times 10$. B, styloid, ossicles and paired plates of appendage of NMVP100363 (holotype), $\times 5$. C, inside of plano-concavesurface of NMVP100369, $\times 3$. D, proximal surface omament of NMVP100370, $\times 7$.

FIG. 9. lictortacystis holmesonum sp, nov. Tetramerous rings, styloid, ossicles and paired plates. A,

FIG. 10. Iictoriacystis holmesorum sp. nov. Convex surface (C), terrace-like ridges (C), ossicles and plates $(A, B, D) . A . C$, NMVP100389, $\times 6, B, D$, NMVP100 $366, \times 15$.

FIG. 11. Victoriacystis holmesonum sp. nov. Internal side of central part of convex surface (A,B) and transverse section of terrace-like ridges of plano-concave surface (C) \wedge, B, NMVP100367, $\times 3$ and $\times 12$, respectively. C, NMVP108627, $\times 10$.
with sharp lateral margin becoming more indistinet distally, with distal $1 / 3$ eireular or broadly elliptical in section (Figs 3A, 4A, 6A, IIA), with oblique gently eonvex, surrounded medially by slightly thiekened margin and earrying low conieal subcentral projeetion, giving insertion to toroidal process (Figs 2E, 3A, 5D, 6A, 7E). Right spines deseribed individually: some (Fig. 3B-C) more slender, slightly shorter than left spine. uniformly deereasing in diameter proximo-distally, slightly flattened in proximal $1 / 2$, with weak lateral keel, with proximal 1/4 separated from rest of the spine by abrupt genieulation; with distal $3 / 4$ of spine straight or very gently eurved medially; most others gently (Figs 2D-E, 3D-E, 5A-D, 6B-C, 7A-B) to strongly convex laterally (Figs 1A, 5C, 6D) proximally, laterally eoneave distally, forming a distinct distal hook in one speeimen, with almost uniform cross-scetion proximo-distally and with blunt distal end, with artieular surfaee similar to that of left spine, but perpendicular to main axis and without thickened medial margin.

INTERNAL. Plano-concave surface. Slightly oblique septum along left $1 / 2$ of inside of C and of left PM, slightly sinuous in its distal $1 / 2$, ending in poorly defined spur-like proeess subeentrally on distal $1 / 3$ of C , with proximal part of septum convex laterally. Proximo-distally elongate, trough-like area of inside of left PM between septum and lateral margin of left PM. Faint ridge diverging laterally from the spur-like proeess, running on inside of C and right PM , flanking the lateral margin of the latter. Transverse ridge near distal margins of A and C, slightly eoncave distally, more robust on A, occupying almost the entire width ol A, interrupted laterally on C. Proximal and distal surfaecs of ridge sloping gently. Inside of other plates poorly preserved but apparently smooth.
Convex surface. Internal surfaee of C1-C5 margins slightly thickened (Fig. 5D), surrounded by very shallow peripheral groove, with distal 1/3 (Figs 5D, 7E) oceupied by proximally recumbent walls at $\mathrm{c} .20^{\circ}$ to internal surftee of plates, extending almost eompletely across their width. Distal surfaces of transverse walls merging gradually into distal $1 / 3$ of interval side of plates, also slightly raised with respeet to their proximal $2 / 3$. Walls on Cl and $\mathrm{C} 5 \mathrm{c} .1 / 2$ as wide as walls on C2-C4, slightly thicker than these, torus-shaped with strongly convex, blunt free margin. Walls on C2-C4 rectangular, with straight, thinner free margin and with elear-cut separation ol lateral
margins from inside of plates. Internal surface of C6-C9 smooth and fcatureless. Subcentral, proximo-distally elongate thickening on internal surface of C10, C12 and C14. Lateral surfaces of thickenings almost vertical. Thickenings on Cl0 and C14 roughly elliptical, e. twiee as long as wide. Thickening on C12 almost 3 times longer than wide, with subparallel lateral margins. Similar thickening, spindle-shaped in outline and with greater axis at e. 60° to body axis, visible in the middle of plate C15 in NMVP100367 (Fig. 11A-B).
Internal surfuce of C16 (Fig. 11A-B). Distal 1/2 not elear. Proximal $1 / 2$ with a shallow erueiform area with irregular arms, outlined by thin ridges. Proximal arm short and stout, with gently eoneave margins, reaehing proximo-lateral margin of C16. Distal margin of lateral arm eurving distally as sinuous ridge joining lateral margin of distal arm of cross. Distal arm about twiee as long as lateral and proximal arms.
APPENDAGE. 1-1.25 times body length; proximal part 3 times wider at proximal ring than at distal ring, with segments of proximal $1 / 3$ of distal part deereasing in size and ehanging shape distally. Segments of ecntral $1 / 3$ of distal part deereasing uniformly in size and displaying less remarkable ehanges in shape. Distally appendage whip-like, with segments of approximately constant proportions.
Proximal part. Tetramerous rings with proximal one largest, with remainder of subequal length but deereasing width. Paired ring plates on plano-concave side, slightly smaller than those lying on opposite side, less convex in cross-section, with narrower thickening along distal margins (Figs 1A-B,E, 2A,D-E, 3D, $4 \mathrm{~A}-\mathrm{B}, \mathrm{F}, 5 \mathrm{~B}, 7 \mathrm{~B}, 8 \mathrm{~A}, 9 \mathrm{~A}-\mathrm{C}, \mathrm{E}, 12 \mathrm{~A}-\mathrm{C})$. Distal margin of proximal ring straight, without tubcrcles. Distal margins of other rings eoncave, with regularly spaced, subeonieal to hemispherical tubercles (Figs 1E, 2C-D. 3D. 4A-C, F, 5A-B, 8A, 9A-C, E). Articular surfaees on lateral ends of ring plates on same side as convex surfaec, proximo-distally elongate, triangular, with a subcentral, roughly circular shallow area (Figs 1B,E, 2C-D, 8A, 9A).
Intermediate part. Styloid (Figs 1B, E, 2D, 4B,F, $7 \mathrm{~A}, \mathrm{C}, 8 \mathrm{~A}, \mathrm{~B}, 9 \mathrm{~A}, \mathrm{E}, 12 \mathrm{~A}-\mathrm{B}, 13 \mathrm{~B})$ robust. Proximal articular process just beneath proximal blade, subhorizontal, flattened, subtriangular. Proximal blade expanded transversely, recumbent, with free margin blunt, semicircular to broadly semielliptical. Narrow, sharp, median

FIG. 12. Reconstruction of Jictoriacystis holmesormm sp . nov. A, plano-concave surface. B, left lateral view. C, convex surface. D, distal surface(distally articulated spines omitted). E, provimal surface(appendageomitted)
longitudinal kecl ending abruptly before reaching free margin of proximal blade and widening slightly in its distal $1 / 2$. Region of blade facing proximally between free margin and insertion of proximal articular process vaulted. Distal blade 3 times as high as wide, spike-like. Proximal margin of distal blade narrowly acute but not sharp, slightly coneave in lateral view in its lower $2 / 3$ and almost straight in its upper 1/3 before merging into blunt blade apex. Lateral surfaces of distal blade flat to very gently concave in upper $2 / 3$.
Distal purt. (Figs 2B,D, 4B,F, 7A-C, 8B, 9A-E, 10A-B,D, 12A-C, 13A,C-D). Ossicles of first 5-6 segments slightly more than 3 times as high as long and divided into massive body and bladelike process, or apex. Processes of first 3 or 4 ossieles (Fig. 13A) ahmost as high as their bodies, gradually deereasing in height and length distally, wedge-shaped in transverse seetion, with strongly curved proximal margin. Proximal margins of processes merging into sharp median longitudinal keel with asymmetrical parabolic profite and oeeupying proximal $1 / 3$ (in first 3 ossicles) to $1 / 2$ (in subsequent 2 or 3 ossicles) of ossicular length. Artieular margins for insertion of paired plates bearing smaller, shallower proximal facet and larger, deeper distal facet. Ossicles 7-9 (Fig. 10D) 3 times as high as long: processes narrower than on more proximal ossicles, deereasing in size distally, confined to distal 1/3-1/4 of ossicular length, subtriangular in lateral view. Keel slightly coneave to straight in lateral view. Remaining ossieles (Figs 9B-D, $10 \mathrm{~A}-\mathrm{B}$) subreetangular in lateral view, 3 times as high as long, with almost straight proximal and distal margins; processes diminishing distally, cuspatc, shaped like an equilateral triangle in cross-section. Terminal ossieles without processes.

Proximal (Fig. 13C) and distal (Fig. 13D) artieular surfaces parabolie, slightly taller than wide, comprising an outer interossicular depression, an inner interossicular depression and a median interossicular groove. Outer interossicular depression delimited laterally by slightitly thickened ossicular margin of uniform width and medially by thinner, ascending ridges forming external subelliptieal boundary of inner interossicular depression, becoming thinner and narrower apically, Inner interossicular depression elliptical, oceupying most of apical $2 / 3$ of articular surface. Internal boundary of depression delinited by faint vertical ridges flanking median intcrossieular groove. Abapieal
ends of ascending ridges turned abruptly laterally, merging into free, semieireular rims of 2 articulation bosses on proximal articular surface of ossicle. Ridges marking proximal margins of subtriangular faccts for articulation with paired plates of preceding segment of distal part of appendage.
Distal articular surface of ossieles (Fig. 13D) differing from proximal articular surface in apically tapering median interossicular groove, eomparatively deeper lateral regions of outer ossicular depression and trough-like, elongate articular pit delimited by 2 thick ridges diverging apically and laterally, oceupying same position as articular bosses on outer ossieular depression.
Paired plates of distal part of appendage ehanging shape and size throughout appendage length (Figs 2D, 4B, F, 8B, 9A-C, 10A-B,D). Eaeh plate artieulating with distal facet of overlying ossiele and with proximal facet of next distal ossicle. First 4 pair's of plates at least twice as high as long, with gently convex distal margin, with sinuous to straight proximal margin. Subsequent 4 pairs of plates with decreasing height/length ratio almost as long as high. Remaining plates subsemieireular in lateral profile.
Appendage stereom. Stereom of proximal rings generally compact, especially along free margins of ring plates, or with small subcircular pores, resembling that of central surface area of body plates, often with small granulations distributed randomly, rarely with coarse trabeculae and irregular pores. Styloid stereom usually compact, rarely microperforate, sometimes with irregular, elongate trabeculae near margins of lateral surfaces of distal blade. External surface of plates and ossieles of distal part of appendage usually covered with regular, subcireular shallow pits separated by short trabeculac. Stcreom near frce margins of ossicles and plates generally more compact, with smaller pits and more irregular trabeculae, the latter sometimes elongate and giving rise to faint striations, especially near apex of ossieular processes.

DISCUSSION. Victoriacystis holmesormm closely resembles V. wilkinsi and Rhenocystis latipedurculata Dehm, 1932 espceially in the number and arrangement of plates on the convex surface (Ruta, 1997, in press; Ruta \& Bartels, 1998). Rhenocystis is distinguished from Victoriacystis by the plate arrangement of row II, in which C 7 and C 8 are separated by interposition of C 3 and C 12 . l' Loholmesorm is larger and more robust than V. wilkinsi and R. Latipeduncrulata. It

FIG. 13. Rcconstruction of Victoriacystis holmesortm sp. nov. A, most proximal segments of distal part of appendage. B, styloid in left laterodistal view. C, D. proximal and distal articular surfaces of ossicle of intermediate region of distal part of appendage.
differs from V. wilkinsi in its differentiated distal part of the appendage, larger plates of row 1II, C 10 C 12 and C14, with respect to more proximal and distal elements, narrower proximal $1 / 2$ of C16 and C18 with respeet to distal 1/2, lack of contact between C17 and either proximal angle of C12 or distal angle of C21, larger A with respect to LOP and MOP, usually strongly arcuate or geniculate suture between A and C , more robust and larger styloid, more strongly rceurved proximal ossicular blades, absence of tubereles from the paired plates of the distal part of the appendage and longer and more robust spines, sometimes with remarkably different morphology.

Pscudovictoriacystis gen. nov.

TYPE SPECIES. Psendovictoriacystis problematica sp. nov.

ETYMOLOGY. Greek psendo, false, plus Victoriacystis; alluding to resemblance between new genus and Victoriacystis. Feminine.
DIAGNOSIS. Distal $1 / 2$ of convex surface of rows I and II1, with 5 and 3 elements respeetively. Distal margin of convex surface slightly eonvex centrally, concave laterally Cl 2 in contact with C2-C4. Lateral margins of C 12 diverging slightly distally. C10 and C14 larger than C12, sutured with C1-C2 and with C4-C5, respeetively. Proximal $1 / 2$ of convex surface of rows IV and V , the former including C15, C17 and C19. C15 and C19 subtrapezoidal, their lateral margins 1.5 times as long as medial margins. C17 shield-shaped, at least 3 times as wide distally as proximally, with 3-lobed distal margin. C20 and C22 almost $1 / 2$ as long as body, with strongly sinuous medial margins and very gently convex latcral margins. C2I narrowly inserted between C20 and C22, at least twice as long as wide, reaching maximum width in proximal $1 / 3$.

Pseudovictoriacystis problematica sp. nov. (Figs 14-16)

ETYMOLOGY. Greek problema, question; alluding to the puzzling plate configuration of the convex surface.

MATERIAL. HOLOTYPE: NMVP100383 from NMVPL252.
DIAGNOSIS. As for genus.
DESCRIPTION Length 24 mm , width 16 mm , broadly rectangular. DLM and LOP of left side. C15, spines and articulated appendage not preserved.
Plano-concave surface. Plating pattern and general plate proportions similar to Victoriacystis holmesorum. Differences as follows (Figs 14A, 15A): maximum body width about halfway along PLM; lateral margins of ILM and DLM straight; shallower lateral body walls; much greater PLM/ILM length ratio; length of distal margin of PLM/length of proximal margin of PLM slightly lowcr: proximal $1 / 3$ of lateral margins of PLM more strongly curved medially; distal margins of PLM sinuous, with medial $1 / 2$ proximally convex and lateral $1 / 2$ proximally concave; PM about as long as C ; lateral margins of PM more gently convex and with most proximal part forming deep semicircular notch; proximolateral angles of PM extended as narrow lateral elongate processes; proximal margins of PLM and PM at obtuse angle rather than merging gradually; medial margins of 1LM slightly more concave; DLM about twice as long as wide, with

FIG. 14. Pseudovictoriacustispmhtematica gen. el sp. nov. Holotype, NMVE100383. A.B, plano-concave and convex surfaces, respectively, $\times 3, \mathrm{C}$, close-up of $\mathrm{C} 20-\mathrm{C} 22, \times 10$.

FIG 15. Pseudovictoriacystis problematica gen. et sp. nov. Holotype, NMVP100383. A, close-up of right LOP MOP and articular surface of right DLM, $\times 15, \mathrm{~B}$, close-up of distal part of convex sufface, $\times 10$.
distally protruding articular region for spine insertion and shallow depressed area medial to articular region: distal surface of articular region icardrop-slaped. with latcral cnd forming an acute angle and divided into 2 distinet parts: latcral part broadly triangular and shallowly concave: medial part subcircular and markedly convex distally: bearing small. subcemtral toroidal process giving rise to a short. faint medial ind lateral ridge: suture betwecn A and C mostly straight, at $c .60^{\circ}$ to longitudinal body axis, gently curved and meeting proximal margin of MOP in distal 1/t.

Convex surface (Figs 14B-C. 15B, 16). Slightly disrupted: proximal $1 / 2$ reconstmicted tentatively: Trans cerse rows of plates 4; distal row with 5 plates, homologous with Cl-C5 of other anomalocystitids (c.g. Rhenocestis and licteriacustis.). C2 and C+ subtrapczoidal. with distally converging lateral and medial margins and with lateral $2 / 3$ of proximal margins broadly convex and ly ing proximal to proximal margin of $\mathrm{C} 3 . \mathrm{CI}$ and C 5 subrectangular. about twicc as long as wide. with broadly concave distal margins. Row 11 of 3 plates $(=\mathrm{C} 10, \mathrm{C} 12$ and $\mathrm{Cl}+$ based ou shape and proportions). C10 and Clt longer than wide. subpentagonal, with medial angles strongly developed into points. C12 in contact with C3 medially and C2 and C 4 laterally. Lateral margins of C 12 mostly straight, sliglitly conver at proximal and distal cnds. C15 and C19 smaller. subtrapezoidal. with convex margins. C 17 with L/W ratio of 1.4. with latcral margins divided into sinuous distal $1 / 2$ and distally diverging concave proximal $1 / 2$ with distal margin broadly comex. with expanded central scction. C20 and C22 with distal to proximal margins: distal margins $<1 / 3$ plate length, oriented slightly oblique to longitudinal axis. slightly concarc: latcral margins very gently convex in distal $t / 2$, more strongly consex in proximal $1 / 2$. Proximal margins merging into lateral margins. forming proximally protnading blunt-ended angles, with latcral 2/3 of proximal margins slightly convex. with medial $1 / 3$ gently sithous. Forming contral excalvation into proximal margin. Mcdial margins convex but with smooth imvagination distal to rounded medial projections at proximal cnd. C21 (Fig. 1+B-C) (rapezoidal. inserted betwecn C20) and C22. with gently convex proximal margin, "ith $4-5$ irrcgular ridges, withone bifureated laterally.
Sculpture. PLM with robust terrace-like ridges. with thickened free margin: ridges irregularly simuous. uncerenly spaced, sometimes interrupted

FIG. 16. Reconstruction of convex surface of P seudovichoriacyssis problemalica gen. et sp. nov:
medially or giving rise to irregular lateral bifureations, with most proximal ridges short and at c. 45° to body axis. with smooth broadly trapezoidal area oll cxicrnal surface (Fig. 14A). Terraec-like ridges on C20 and C22 (Figs 14B-C) less stecp than on PLM, without thickened free margin. oricnted mainly transterse 10 longitudinal body axis but irrcgularly sinuous. Single. sigmoidal ridge at 45° to longitudinal avis on proximolateral $1 / 4$ of extemal surface of C 19 .
Body stereom. Stereom of plano-concave surface similar to that of I ictoriacystis holmesormm. but consisting of slightly coarser mesliwork. especially in the ecnitres of the plates, often forming a reticulate pattern of irregular pores and trabeculac. Peripheral surface. especially on A. C. MOP and ILM. with clongate pores and thin. straight trabeculae arranged radially (Figs 1+A.

15A). Stercom of convex surface retiform except on C20-C22 (Fig. 15B-C). All other plates, but especially those of the 2 most distal transverse rows, with distinct surface pattern with pores increasing in size, becoming more elongate and arranged more regularly from centre to margins of plates, separated by radiating trabeculae, often dichotomously branching towards the periphery. Pores near plate margins polygonal, separated by short trabeculae, giving rise to coarse, cancellate surface pattern of stereom. Stereom of periphery of C17 and of medial $1 / 2$ of C19 of densely spaced, circular to subelliptical porcs, without obvious radiating arrangement of trabeculae.

REMARK.S. The possibility that NMVP 100383 is a teratological individual of Ifctoriacystis holmesorum cannot be entirely ruled out. It closely resembles the latter in plating of the plano-concave surface. Although rare, pathological mitrate specimens are known (Ruta, 1998). However, in all known cases, abnormal individuals can be assigned to known species, based on their possession of most of the characters shared with normal individuals.
Pending discovery of additional specimens to contirm diagnostic features. NMVP100383 is here placed in a new taxon because the configuration of its convex surface reveals a unique combination of attributes not observed in any other species.
Plate arrangement of distal $1 / 2$ of convex surface resembles that of Placocystites forbesianus de Koninck, 1869 (Jcfferies \& Lewis, 1978) from the English Wenlock. In Psendovictoriacystis and in Placocystites, C10, C 12 and C14 are sutured with row I, there is no intervening row 11 and C 12 is slightly smaller than both C10 and C14. Pseudovictoriacystis differs from Placocystites in being much longer than wide, in displaying a more limited distribution of terrace-like ridges, in possessing 5 rather than 3 plates in row I and in showing a much simpler plate configuration on proximal $1 / 2$ of convex surface, apparently without plates C16 and C18 and with enlarged C17. Furthermore, C3 is separated from C10 and C14 by interposition of C2 and C4 and appears to be comparable in size with C1 and C5 and slightly smaller than C2 and C4.
The much older Kopficystis kirkfieldi Parsley, 1991 from the Trentonian of Ontario, vaguely resembles Pseudovictoriacystis in its 3-plated transverse row on distal $1 / 2$ of convex surface. However, identification of the skeletal plates in
that taxon is problematic (Ruta, in prcss). Unlike Pseudovictoriacystis, Kopficustis has 5 rather than 4 transverse rows of plates. Assuming the correctness of plate homologies discussed by Parsley (1991) and Ruta (in press), the most distal skeletal elements in this anomalocystitid correspond to $\mathrm{Cl}, \mathrm{C} 6, \mathrm{C} 9, \mathrm{Cl} 0, \mathrm{CI} 2$ and Cl 4 and to CMł. o, j, gl, i and e respectively in the terminology of Parsley (1991).

Although Pseudovictoriacystis displays a unique sel of skeletal features, it is impossible to ascertain its affinitics; we regard this form as deriving from a Victoriacystis-like ancestor.

ACKNOWLEDGEMENTS

We thank David Holloway (Museum of Victoria), Steve Eckardt and Frank and Enid Holmes for help in the field. M.R. is grateful to the Queensland Museum (Brisbane) for generous hospitality and for the use of facilities. A.R. Milner (Birkbeck College, University of London), R.P.S. Jefferies, A.C. Milner, S.J. Culver and L.R.M. Cocks (Natural History Museum, London) read a draft of the manuscript. P. Crabb (Natural History Museum, London) photographed the specimens. We thank Dennis Kolata and Colin Sumrall for useful reviews but the vicws expressed herein are those of the authors alonc. This work was carried out while M.R. was in receipl of a European Community grant (Training and Mobility of Researchers).

LITERATURE CITED

CASTER, K.E. 1952. Concerning Enoploura of the Upper Ordovician and its relation to other carpoid Echinodermata. Bulletins of Amcrican Paleontology 34: 1-47.
CASTER, K.E. \& GILL, E.D. 1967. Family Allanicytididac, new family. Pp. S561-S564. In Moorc. R.C. (cd.) Trcatise on invertebrate paleontology, Part S. Echinodermata 1(2). (Geological Society of America \& University of Kansas : New York).
DEHM, R. 1932. Cystoideen aus dem rheinischen Unterdcyons. Neues Jahrbuch für Mineralogie, Geologie und Paléontologie. Beilage-Band, Abteilung A 9: 63-93.
GILL, E.D. 1948. A new trilobite from the Yeringian (Lower Devonian) rocks of Kinglake, Victoria. Proccedings of the Royal Society of Victoria 59: 8-19.
GILL, E.D. \& CASTER, K.E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology 41: 5-71.
HOLLOWAY, D.J. \& JELL, P.A. 1983. Silurian and Devonian edrioasteroids from Australia, Journal of Paleontology 57: 1001-1016.

JAEKEL, O. 1918. Phylogenie und System der Pelmatozocn. Paläontologische Zeitschrift 3: 1-128.
JEFFERIES, R.P.S. 1968. The Subphylum Calcichordata (Jeffcries 1967) - primitive fossil chordates with echinoderm affinities. Bulletin of the British Museum (Natural History), Geology Scries 16: 243-339.
1990. The solute Dendroc 7 stoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. Palaeontology 33: 631-679.
JEFFERIES, R.P.S. \& LEWIS, D.N. 1978. The English Silurian fossil Placocystites forbesianus and the ancestry of the vortebrates. Philosophical Transactions of the Royal Society of London, Serics B 282: 205-323.
JELL, P.A. 1983. Early Dcvonian echinoderms from Victoria (Rhombifcra, Blastoidea and Ophiocistioidea). Memoirs of the Association of Australasian Palaeontologists 1: 209-235.
KOLATA, D.R. \& JOLLIE, M. 1982. Anomalocystitid mitrates (Stylophora. Echinodermata) from the Champlainian (Middle Ordovician) Guttenberg Formation of the Upper Mississippi Valley Region. Journal of Paleontology 56: 531-565.
KON1NCK, M.L. de 1869 . Sur quelques échinodermes remarquables des terrains paléozoiques. Bulletin de l`Académie Royale des Sciences Belgique 28: 544-552.
PARSLEY, R.L. 1991. Review of sclected North American mitrate stylophorans (Homalozoa: Echinodermata). Bullctins of American Palcontology 100: 5-57.
RUTA, M. 1997. Redescription of the Australian mitrate lictoriacystis with comments on its functional morphology. Alcheringa 21:81-101.
1998. An abnormal specimen of the Silurian anomalocystitid mitrate Placocvstites forbesianus. Palacontology 41: 173-182.
In press. A cladistic analysis of the anomalocystitid mitrates. The Zoological Journal of the Limean Society.
RUTA, M. \& BARTELS, C. 1998. A redescription of the anomalocystitid mitrate Rhenocystis
latipedunculata from the Lower Devonian of Germany. Palaeontology 41: 771-806.
RUTA, M. \& JELL, P. A. 1999a. Adoketocarpus gen. nov., a mitrate from the Ludlovian Kilmore Siltstone and Lochkovian Humevale Formation of central Victoria. Memoirs of the Queensland Museum 43: 377-398.
1999b. A note on Victoriacystis wilkinsi (Anomalocystitida: Mitrata) from the Upper Silurian of Victoria. Mcmoirs of the Queensland Muscuin 43: 423-430.
RUTA, M. \& THERON, J.N. 1997. Two Devonian mitrates from South Africa. Palaeontology 40: 201-243.
STRUSZ, D.L. 1972. Correlation of the Lower Devonian rocks of Australasia. Journal of the Gcological Society of Australia 18: 427-455.
TALENT, J.A. 1967. Silurian sedimentary petrology and palaeontology. Bulletin of the Geological Survey of Victoria 59: 24-29.
UBAGHS, G. 1967. Stylophora. Pp. 496-565. In Moore, R.C. (ed.) Treatise on invertebrate palcontology. Part S. Echinodermata 1(2). (Geological Society of America \& University of Kansas: Ncw York).
1969. Les échinodermes carpoides de l*Ordovicien inférieur dc la Montagne Noire (Francc). Cahiers de Paléontologie. (Éditions du Centre National de la Recherche Scientifique: Paris).
VANDENBERG, A.H.M. 1988. Silurian-Middle Devonian. Pp. 103-146. In Douglas, J.G. \& Ferguson, J.A. (eds) Geology of Victoria. (Victorian Division of the Geological Society of Australia: Melbourne)
VANDENBERG, A.H.M, GARRATT, M.J, \& SPENCER-JONES, D. 1976. Silurian-Middle Devonian. Special Publications of the Geological Society of Australia 5: 45-76.
WILL1AMS, G.E. 1964. The geology of the Kinglakc district, central Victoria. Procecdings of the Royal Society of Victoria 77: 273-328.
WOODS, 1.S. \& JEFFER1ES, R.P.S. 1992. A new stem-group chordate from the Lower Ordovician of South Wales, and the problem of locomotion in boot-shaped comutes. Palacontology 35: 1-25.

